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LETTER TO THE EDITOR 
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75252 Paris Cede%. France 
3 Depamnent of Physics, Northeastem University, Boston, Massachuseds 021 15, USA 

Received 16 February 1993 

Abstract An exact critical frontier for the Pots model on the 3-12 lattice. which includes 
the Kagome lattice as a special e+e. is determined in a special parameter space of the two- 
and threesite interactions. The determination is made possible by the use of a srar-uimgle 
hansfomtion which convem the lanice into one whose exact critical point is known. 

The determination of the exact critical frontier for the Potts model [I] for general two- 
dimensional lattices has remained very much an open problem. Unlike the king model 
for which the exact critical point can be worked out for any two-dimensional lattice, the 
critical point for the Potts model has been determined only for the square, triangular, and 
honeycomb lattices [2,3]. In particular, the exact critical point for the Kagom6 Potts lattice 
has proven to be exceptionally elusive to analyse. In view of the considerable recent interest 
in investigating higher spin systems on the Kagom6 lattice in the context of high-temperature 
superconductivity (see for example [4]), it is of some interest to revisit the Kagomd Potts 
model. Here we report on some exact results in this connection. 

We begin by considering the Potts model on the more general 3-12 lattice. The 3-12 
lattice, shown in figure 1 with (reduced) two-site and three-site interactions Ki, K;, Ji and 
M ,  M’, respectively, reduces to the Kagomb lattice by taking the Ji = 00 limit. We shall 
determine its exact critical frontier in a special manifold of the parameter space. 

The first step of our consideration is a transformation which converts the 3-12 lattice 
into a triangular one. This is accomplished by introducing the star-triangle transformation 
shown in figure 2. Specifically, we require the up-pointing triangle consisting of two- 
site interactions K , ,  K2, K3 and the three-site interaction M to be replaced by the two- 
site L I ,  L2, L3 interactions forming a ‘star’ in the ,form of a ‘Y’. While generally this 
transformation cannot be caired through for q 3 3, where q is the number of states, a little 
algebra shows that the transformation does hold in a special parameter manifold [5]. To 
obtain an explicit expression of this manifold, we write out the transformation which reads 

0305-4470/93/120495+05$07.50 @ 1993 IOP Publishing Ltd L495 



L496 Letter to the Editor 

Figure 1. The 3-12 laftice. 

Then, an expression of the special manifold in the (M, Kl, K2,  K3] space is obtained from 
(1) by eliminating L1, L2, L3. This leads to the equation 

) e21M+Ki+K2+Kd - eM+K~+Ki+K3 4 + K z  + eKz+K3 + eKz+K~ - 1 (e 
+ (eKt + eKz + efi + - 4) + + e ~ 3 + ~ I  - 4 +3) 

- qeK'+KZ+K3 - (e2K1 + + + q2 - 6q + 10 = 0. (2) 

Figure 2. The m-triangle relation. 

Cany out this star-triangle transformation for all up-pointing triangles. "he 3-12 lattice is 
reduced into a triangular one shown in figure 3, where each shaded down-pointing hiangle 
possesses a structure as shown in figure 4. The Boltzmann factor F ( q ,  UZ., 03) of the 
shaded triangle whose three terminal spins are. in states 01, 02, 03 = 1.2, . . . , q can be 
readily worked Out. After some algebra and disregarding an overall constant which does 
not concem us, we amve at the expression 

F(oI ,  02, 03) = A + BISU + 82631 + 83612 + C ~ I U  (3) 
where Si, = S(uii, q). 6123 = S(u1, 02)6(u~, 03) and 

A = (q + V I  + uz + U,)[? + q(wl + wz + ~ 3 )  + h]  + V I U Z Y  

+ V l V Z ( 4  + 
BI = vz%[h + (4 + U ~ W I ]  

+ w2) + v2v3(q + wz + w3) + U3ul(q + w3 + W I )  
(4) 

C = Ul%v,h 
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and similar expressions for BZ and B3. Here 

h = eM’+K;+K;+G - eKL - eK; - ,& + 2 

ui = (e’; - I)(e‘i - 1)/(e4 + e 4  +q - 2) 

w.-eK;-l .  1 -  

Then, the partition function of the 3-12 Potts model becomes 

where the product is taken over all down-pointing triangles in figure 3. 

(5) 

F b r e  3. The hiangular lanice 

Figure 4 The internal smcture of a shaded down-pointing hiangle. 

NOW, the Potts model with the partition function (6) is self-dual [6,7]. It has been 

(7) 

established [SI that in the regime+ 

F(u3 U,.) 3 { F(u, U .  U’). F(u, U’,  d, F(u’, U ,  U ) ,  F(u, U’, U” ) )  

the critical frontier is located at the self-dual point 

F(u, U, U )  - F(u, U, U’) - F(u, U’, U )  - F(cr’, U, U )  = q - 2 (8) 

where cr # U’ in (8). Substituting from (3) we find that (7) and (8) become, respectively 

BI + B 2  + E3 + C  > 0 Bi + Bj + C  0 i # j  (9) 

q A  = C. (10) 

t Assuming that in this ferromagnetic re@me, one has a unique critical point in some variable such as the one 
denoted by y in [&SI. 
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Thus, we have located an exact critical frontier for the Pot& model on the 3-12 lattice. That 
is, in the regime (1) and (9), the critical frontier is (10). 

Isotropic case. For the isotropic lattice with Ki = K ,  K/ = K', J; = J and hence Li = L,  
we can solve eL from the second line of (l), which now reads 

It is informative to examine the critical frontier (10) in some special instances. 

(e' - = (e" - 1)[3(eL - 1) +q]. 

The substitution of this expression of eL into (10) now yields an explicit expression of the 
critical frontier in terms of the Kagom6 parameters K, K', M, M', J. Here, M is given by 
(2) or, equivalently 

e 2 M t 6 K  + (1 - 3e2K)eM+3K + q - 2 = (q - 9)e3" + 3(5 - q)e2" + 3(q - 3)eK. (12) 

Indeed, we have verified that in this case the critical condition (10) does possess solutions 
in the physical ferromagnetic regime. 

Up-down symmetry. In the case of the lattice with up-down symmetry K i  = Ki ,  M' = M 
one can alternately perform the star-triangle transformation to both the up and down triangles 
of the 3-12 lattice. This results in a honeycomb lattice whose edges are sequences of two 
L; and one Ji interactions and whose critical condition is known. The sequence of two Li 
and one J; interactions can be replaced by a single equivalent interaction K,? = K;(Ki,  4) 
given by [SI 

or, equivalently 

(eL8 - 1)' 

2 e ~ i  + q - 2 +  (eL+ + q  - l)'/(eh - I)' 
(14) e K' f - I =  

where e'! - 1 is given in terms of K; as in (11). Thus, from the known critical point for 
the honeycomb lattice [2,3], one obtains an altemative expression for the critical frontier 
in the ( K ,  J ]  space of 

f l fZt3  = 401 + t 2  + f3) + 4' (15) 

where r; = eK; - 1. For isotropic interactions K,? = K', this reduces to 

(e"' - 1)3 = 3q(eK' - 1) +q2. (16) 

Kugnd  lattice. The Kagom6 lattice is recovered by setting J, = w. Generally, the critical 
frontier (IO) does not intersect the manifold M = 0 for the Kagomt lattice. This can be 
seen from the fact that, using M = 0, one obtains from (1) the relations 
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In the case of M' = M = 0 it is clear that (17) is incompatible with the critical frontier 
(15), as both equations are of the same form but in terms of different variables ti and ut. 

Indeed, it is straightforward to verify for general M' that. by first using (17) to eliminate 
uluzu3 and then using (18) to eliminate U: (inside the squak bracket in (19)), one obtains 
from (4) the identity 

This expression cannot vanish for integral q > 2. Hence (IO) has no solution for M = 0. In 
addition, since M' does not appear in (19), this implies that (IO) has no solution whenever 
one of the three-spin interactions M ,  M' vanishes. 

Finally, for the isotropic Kagom6 lattice with updown symmetry K' = K, M' = M, 
the critical frontier is (16) with 

eK' - I = (eL - 1)/(2eL + q - 2). (20) 

Here, e' is a function of eK given by (11). and eM is related to eK through (12). 

This work has been supported in part by CNRS (JMM and GR) and the National Science 
Foundation grants INT-9113107 and DMR-9015489 (FYW). 
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